4.6 Article

Nucleocytoplasmic shuttling of Bruton's tyrosine kinase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 51, Pages 40614-40619

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M006952200

Keywords

-

Ask authors/readers for more resources

Bruton's tyrosine kinase (Btk), a nonreceptor cytoplasmic tyrosine kinase belonging to the Tec family of kinases, has been shown to be critical for B cell proliferation, differentiation, and signaling. Loss-of-function mutations in the Btk gene lead to X-linked agammaglobulinemia (XLA), a primary immunodeficiency in humans, and the less severe condition xid in mice. Although Btk is mainly localized in the cytoplasm under steady state conditions, it translocates to the plasma membrane upon growth factor stimulation and crosslinking of the B cell receptor. Nevertheless, in ectopically as well as endogenously Btk-expressing cells, it can also translocate to the nucleus. Deletion of the pleckstrin homology (PH) domain (Delta PH1) leads, however, to an even redistribution of Btk within the nucleus and cytoplasm in the majority of transfected cells. In contrast, an SH3-deleted (Delta SH3) mutant of Btk has been found to be predominantly nuclear. We also demonstrate that the nuclear accumulation of Delta PH1 is dependent on Src expression. This nucleocytoplasmic shuttling is sensitive to the exportin 1/CRM1-inactivating drug, leptomycin B, indicating that Btk utilizes functional nuclear export signals. In addition, while the Delta PH1 mutant of Btk was found to be active and tyrosine-phosphorylated in vivo, Delta SH3 displayed decreased autokinase activity and was not phosphorylated. Our findings indicate that the nucleocytoplasmic shuttling of Btk has implications regarding potential targets inside the nucleus, which may be critical in gene regulation during B cell development and differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available