4.4 Article

Adenine protonation in domain B of the hairpin ribozyme

Journal

BIOCHEMISTRY
Volume 39, Issue 51, Pages 16026-16032

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi001976r

Keywords

-

Ask authors/readers for more resources

Protein enzymes often use ionizable side chains, such as histidine, for general acid-base catalysis because the imidazole pK(a) is near neutral pH. RNA enzymes, on the other hand, are comprised of nucleotides which do not have apparent pK(a) values near neutral pH. Nevertheless, it has been recently shown that cytidine and adenine protonation can play an important role in both nucleic acid structure and catalysis. We have employed heteronuclear NMR methods to determine the pK(a) values and time scales of chemical exchanges associated with adenine protonation within the catalytically essential B domain of the hairpin ribozyme. The large, adenine-rich internal loop of the B domain allows us to determine adenine pK(a) values for a variety of non-Watson-Crick base pairs. We find that adenines within the internal loop have pK(a) values ranging from 4.8 to 5.8, significantly higher than the free mononucleotide pK(a) of 3.5. Adenine protonation results in potential charge stabilization, hydrogen bond formation, and stacking interactions that are expected to stabilize the internal loop structure at low pH. Fast proton exchange times of 10-50 mus were determined for the well-resolved adenines. These results suggest that shifted pK(a) values may be a common feature of adenines in non-Watson-Crick base pairs, and identify two adenines which may participate in hairpin ribozyme active site chemistry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available