4.5 Article

On optimal constrained trajectory planning in 3D environments

Journal

ROBOTICS AND AUTONOMOUS SYSTEMS
Volume 33, Issue 4, Pages 195-206

Publisher

ELSEVIER
DOI: 10.1016/S0921-8890(00)00095-6

Keywords

constrained trajectory planning; acceleration-based optimization; piecewise smooth trajectories; 3D static environments

Ask authors/readers for more resources

A novel approach to generating acceleration-based optimal smooth piecewise trajectories is proposed. Given two configurations (position and orientation) in 3D, we search for the minimal energy trajectory that minimizes the integral of the squared acceleration, opposed to curvature, which is widely investigated. The variation in both components of acceleration: tangential (forces on gas pedal or brakes) and normal (forces that tend to drive a car on the road while making a turn) controls the smoothness of generated trajectories. In the optimization process, our objective is to search for the trajectory along which a free moving robot is able to accelerate (decelerate) to a safe speed in an optimal way. A numerical iterative procedure is devised for computing the optimal piecewise trajectory as a solution of a constrained boundary value problem. The resulting trajectories are not only smooth but also safe with optimal velocity (acceleration) profiles and therefore suitable for robot motion planning applications. Experimental results demonstrate this fact. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available