4.6 Article

Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 1, Pages 232-243

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M006555200

Keywords

-

Funding

  1. NIGMS NIH HHS [GM-41347] Funding Source: Medline

Ask authors/readers for more resources

We demonstrate that RecQ helicase from Escherichia coli is a catalytic helicase whose activity depends on the concentration of ATP, free magnesium ion, and single-stranded DNA-binding (SSB) protein. Helicase activity is cooperative in ATP concentration, with an apparent S-0.5 value for ATP of 200 muM and a Hill coefficient of 3.3 +/- 0.3, Therefore, RecQ helicase utilizes multiple, interacting ATP-binding sites to mediate double-stranded DNA (dsDNA) unwinding, implicating a multimer of at least three subunits as the active unwinding species. Unwinding activity is independent of dsDNA ends, indicating that RecQ helicase can unwind from both internal regions and ends of dsDNA. The K-M for dsDNA is 0.5-0.9 mum base pairs; the K-cat for DNA unwinding is 2.3-2.7 base pairs/s/monomer of RecQ helicase; and unexpectedly, helicase activity is optimal at a free magnesium ion concentration of 0.05 mM. Omitting Escherichia coli SSB protein lowers the rate and extent of dsDNA unwinding, suggesting that RecQ helicase associates with the single-stranded DNA (ssDNA) product. In agreement, the ssDNA-dependent ATPase activity is reduced in proportion to the SSB protein concentration; in its absence, ATPase activity saturates at six nucleotides/RecQ helicase monomer and yields a k(cat) of 24 s(-1). Thus, we conclude that SSB protein stimulates RecQ helicase-mediated unwinding by both trapping the separated ssDNA strands after unwinding and preventing the formation of non-productive enzyme-ssDNA complexes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available