4.5 Article

Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system

Journal

BIOCHIMIE
Volume 99, Issue -, Pages 162-168

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biochi.2013.11.025

Keywords

Cell-free protein synthesis; Escherichia coli extract; Maltose; Synthetic biology; Long-lived cell-free transcription-translation

Funding

  1. Defense Advanced Research Projects Agency (DARPA/MTO) Living Foundries program [HR0011-12-C-0065 (DARPA/CMO)]
  2. Office of Naval Research [N00014-13-1-0074]

Ask authors/readers for more resources

Cell-free protein synthesis is becoming a useful technique for synthetic biology. As more applications are developed, the demand for novel and more powerful in vitro expression systems is increasing. In this work, an all Escherichia coli cell-free system, that uses the endogenous transcription and translation molecular machineries, is optimized to synthesize up to 2.3 mg/ml of a reporter protein in batch mode reactions. A new metabolism based on maltose allows recycling of inorganic phosphate through its incorporation into newly available glucose molecules, which are processed through the glycolytic pathway to produce more ATP. As a result, the ATP regeneration is more efficient and cell-free protein synthesis lasts up to 10 h. Using a commercial E. colt strain, we show for the first time that more than 2 mg/ml of protein can be synthesized in run-off cell-free transcription translation reactions by optimizing the energy regeneration and waste products recycling. This work suggests that endogenous enzymes present in the cytoplasmic extract can be used to implement new metabolic pathways for increasing protein yields. This system is the new basis of a cell-free gene expression platform used to construct and to characterize complex biochemical processes in vitro such as gene circuits. (C) 2013 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available