4.7 Article

Crystal structure of the hydrated strontium salt of methotrexate: Two independent molecules with different conformations

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 44, Issue 2, Pages 269-273

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm000114l

Keywords

-

Funding

  1. NIAID NIH HHS [AI40392] Funding Source: Medline

Ask authors/readers for more resources

The crystal and molecular structure of methotrexate has been determined by X-ray diffraction from a highly hydrated triclinic crystal form in which the asymmetric unit contains two independent methotrexate molecules with their glutamate carboxyl groups coordinated to two strontium ions. The two methotrexates exhibit differing conformations: They are almost related to one another by a pseudocenter of symmetry. This places the C(9)-N(10) bond vectors on opposite sides of the planes of the pteridine rings. The 2,4-diaminopteridines form 2-fold symmetry-related hydrogen-bonded dimers as well as hydrogen bonds to benzoyl carbonyl oxygens and lattice water molecules. This structure provides experimental proof of the existence of pteridine conformers through rotation about the C(6)-C(9) bond. Comparison of these conformers with other free and enzyme-bound methotrexate conformations shows them all to be different and illustrates the ability of the molecule to adapt to its chemical environment. The results from this crystal structure determination are experimental proof that methotrexate has not one preferred molecular conformation but may freely rotate about several bonds. They also suggest that the dihydrofolate reductase-bound methotrexate conformation is greatly influenced by the specific binding site environment of the enzyme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available