4.8 Article

Stabilizing insulin-like growth factor-I in poly(D,L-lactide-co-glycolide) microspheres

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 70, Issue 1-2, Pages 193-202

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-3659(00)00352-7

Keywords

biodegradable microspheres; insulin-like growth factor-I; poly(lactide-co-glycolide); protein stability

Ask authors/readers for more resources

This study aimed at developing a controlled drug delivery system for recombinant human insulin-like growth factor-I (IGF-I) for localized delivery in bone healing. IGF-I was microencapsulated into an end-group uncapped 14 kDa poly( D.L-lactide-co-glycolide) 50:50 (PLGA 50:50) by solvent extraction from a W-1/O/W-2 dispersion. Prior to encapsulation, IGF-I was exposed to ultrasonication in a water/dichloromethane dispersion, and its stability tested in the presence acid absence of various excipients in the W-1 phase. HPLC and RIA were used for the assessment of IGF-I stability. Microencapsulated IGF-I was tested again for its structural intactness and also for in vitro release from various formulations containing appropriate co-encapsulated excipients. A specific fat cell assay was used to determine the biological activity of released IGF-I. Moderate ultrasonic treatment of aqueous IGF-I/dichloromethane mixtures caused approx. 50% IGF-I degradation. However, IGF-I was fully protected when bovine serum albumin, succinylated gelatin or poly(ethyleneglycol) were added to the aqueous IGF-I. Co-encapsulation of these excipients protected efficiently the protein upon microencapsulation. IGF-I release from microsphere formulations was sustained for up to 13 days featuring a moderately pulsatile pattern, depending on the microsphere composition. Typically, the amounts of IGF-I released within the first 14 b (burst) and during the second release pulse were in the order of 20 and 40%, respectively, of the total dose. The biological activity of released IGF-I was confirmed at selected time-points by the fat cell assay. In conclusion. the developed microspheres proved to be suitable to release biologically intact IGF-I over up to 13 days, a time-period considered to be relevant to promote bone fracture healing. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available