3.8 Article Proceedings Paper

Mutation detection by capillary denaturing high-performance liquid chromatography using monolithic columns

Journal

JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS
Volume 47, Issue 1-2, Pages 5-19

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0165-022X(00)00147-0

Keywords

denaturing high-performance liquid chromatography; monoliths; mutation detection

Funding

  1. NHGRI NIH HHS [HG01932] Funding Source: Medline

Ask authors/readers for more resources

The high resolving power of the chromatographic separation of single- and double-stranded nucleic acids in 200 mum i.d. monolithic poly(styrene-divinylbenzene) capillary columns was utilized for mutation screening in polymerase chain reaction amplified polymorphic loci. Recognition of mutations is based on the separation of homo- and heteroduplex species by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC) under partially denaturing conditions, resulting in characteristic peak patterns both for homozygous and heterozygous samples. Six different single nucleotide substitutions and combinations thereof were confidently identified in 413 bp amplicons from six heterozygous individuals each of which yielded a different unique chromatographic profile. Alternatively, mutations were identified in short, 62 bp PCR products upon their complete on-line denaturation at 75 degreesC taking advantage of the ability of IP-RP-HPLC to resolve single-stranded nucleic acids of identical length that differ in a single nucleotide. Separations in monolithic capillary columns can be readily hyphenated to electrospray ionization mass spectrometry and promise increased sample throughput by operating in arrays similar to those already used in capillary electrophoresis. (C) 2001 Published by Elsevier Science B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available