4.8 Article

Genetic remodeling of protein glycosylation in vivo induces autoimmune disease

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.98.3.1142

Keywords

-

Funding

  1. NIDDK NIH HHS [R01 DK048247] Funding Source: Medline

Ask authors/readers for more resources

Autoimmune diseases are among the most prevalent of afflictions, yet the genetic factors responsible are largely undefined. Protein glycosylation in the Golgi apparatus produces structural variation at the cell surface and contributes to immune self-recognition. Altered protein glycosylation and antibodies that recognize endogenous glycans have been associated with various autoimmune syndromes, with the possibility that such abnormalities may reflect genetic defects in glycan formation. We show that mutation of a single gene, encoding a-mannosidase II, which regulates the hybrid to complex branching pattern of extracellular asparagine (N)-linked oligosaccharide chains (N-glycans), results in a systemic autoimmune disease similar to human systemic lupus erythematosus, cu-Mannosidase II-deficient autoimmune disease is due to an incomplete overlap of two conjoined pathways in complex-type N-glycan production. Lymphocyte development, abundance, and activation parameters are normal; however, serum immunoglobulins are increased and kidney function progressively falters as a disorder consistent with lupus nephritis develops. Autoantibody reactivity and circulating immune complexes are induced, and anti-nuclear antibodies exhibit reactivity toward histone, Sm antigen, and DNA. These findings reveal a genetic cause of autoimmune disease provoked by a defect in the pathway of protein N-glycosylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available