4.5 Article

Stabilizing parallel G-quadruplex DNA by a new class of ligands: Two non-planar alkaloids through interaction in lateral grooves

Journal

BIOCHIMIE
Volume 91, Issue 7, Pages 811-819

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biochi.2009.03.007

Keywords

G-quadruplex; Groove binding; Non-planar; Alkaloids

Ask authors/readers for more resources

Human DNA sequences consisting of tandem guanine (G) nucleotides can fold into a four-stranded structure named G-quadruplex via Hoogsteen hydrogen bonding. As the sequences forming G-quadruplex exist in essential regions of eukaryotic chromosomes and are involved in many important biological processes, the study of their biological functions has currently become a hotspot. Compounds selectively binding and stabilizing G-quadruplex structures have the potential to inhibit telomerase activity or alter oncogene expression levels and thus may act as antitumor agents. Most of reported G-quadruplex ligands generally have planar structures which stabilize G-quadruplex by pi-pi stacking. However, based on a pharmacophore-based virtual screening two non-planar G-quadruplex ligands were found. These two ligands exhibit good capability for G-quadruplex stabilization and prefer binding to paralleled G-quadruplex rather than to duplex DNA. The binding of these ligands to G-quadruplex may result from groove binding at a 2:1 stoichiometry. These results have shown that planar structures are not essential for G-quadruplex stabilizers, which may represent a new class of G-quadruplex-targeted agents as potential antitumor drugs. (C) 2009 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available