4.5 Article

Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor

Journal

MOLECULAR MICROBIOLOGY
Volume 39, Issue 3, Pages 553-566

Publisher

BLACKWELL SCIENCE LTD
DOI: 10.1046/j.1365-2958.2001.02240.x

Keywords

-

Ask authors/readers for more resources

In Streptomyces coelicolor, the AbsA1-AbsA2 two-component system regulates the expression of multiple antibiotic gene clusters. Here, we show that the response regulator encoded by the absA2 gene is a negative regulator of these antibiotic gene clusters, A genetic analysis shows that the phosphorylated form of the AbsA2 response regulator (phospho-AbsA2), generated by the cognate AbsA1 sensor histidine kinase, is required for normal growth phase regulation of antibiotic synthesis. In the absence of phospho-AbsA2, antibiotics are produced earlier and more abundantly. Overexpression of AbsA1 also deregulates antibiotic synthesis, apparently shifting the AbsA1 protein from a kinase-active to a phospho-AbsA2 phosphatase-active form. The absA1 and absA2 genes, which are adjacent, are located in one of the antibiotic gene clusters that they regulate, the cluster for the calcium-dependent antibiotic (CDA). The absA genes themselves are growth phase regulated, with phospho-AbsA2 responsible for growth phase-related positive autoregulation. We discuss the possible role and mechanism of AbsA-mediated regulation of antibiotic synthesis in the S. coelicolor life cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available