4.1 Article

Colocalization of androgen, estrogen and cholinergic receptors on cultured astrocytes of rat central nervous system

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0736-5748(00)00082-4

Keywords

androgen receptors; estrogen receptors; cholinergic receptors; astrocytes; explant and primary cultures; immunohistochemistry; electrophysiology

Ask authors/readers for more resources

By means of immunohistochemical and electrophysiological methods, we have investigated the presence of androgen receptors on astrocytes in explant and primary cultures from various regions of rat central nervous system. Our studies have shown that a great number of astrocytes and neurones express androgen receptors as recognized by a specific monoclonal antibody. Immunoreactivity was mainly distributed over the soma of the astrocytes, the nuclei being intensely stained. In contrast, glial processes were only faintly stained or not stained. Double-immunostaining studies have provided evidence for a colocalization of androgen and estrogen alpha- and beta -receptors on many astrocytes. Furthermore, there was also a coexistence of glial androgen receptors with cholinergic muscarinic and nicotinic sites. Our immunohistochemical findings are supported by electrophysiological investigations demonstrating that 5 alpha -androstan, 17 beta -estradiol as well as the cholinergic agonists muscarine and nicotine caused hyperpolarizations on the same astrocytes. Our studies suggest that there is a coexistence of functional receptors for androgen, estrogen as well as for the cholinergic agonists on glial cells. Further investigations are needed to elucidate the physiological role of glial androgen, estrogen and cholinergic receptors and to define their function in neurodegenerative diseases. (C) 2001 ISDN. Published by Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available