4.7 Article Proceedings Paper

Taxonomy and important features of probiotic microorganisms in food and nutrition

Journal

AMERICAN JOURNAL OF CLINICAL NUTRITION
Volume 73, Issue 2, Pages 365S-373S

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/ajcn/73.2.365s

Keywords

probiotic strains; lactic acid bacteria; gastrointestinal tract; functional properties; molecular typing

Ask authors/readers for more resources

Lactic acid bacteria are among the most important probiotic microorganisms typically associated with the human gastrointestinal tract. Traditionally, lactic acid bacteria have been classified on the basis of phenotypic properties, eg, morphology, mode of glucose fermentation, growth at different temperatures, lactic acid configuration, and fermentation of various carbohydrates. Studies based on comparative 16S ribosomal RNA sequencing analysis, however, showed that some taxa generated on the basis of phenotypic features do not correspond with the suggested phylogenetic relations. Thus, some species are not readily distinguishable by phenotypic characteristics. This is especially true for the so-called Lactobacillus acidophilus group, the Lactobacillus casei and Lactobacillus paracasei group, and some bifidobacteria, strains of which have been introduced in many probiotic foods, eg, the novel yogurt-like commodities. Consequently, modem molecular techniques, including polymerase chain reaction-based and other genotyping methods, have become increasingly important for species identification or for the differentiation of probiotic strains. Probiotic strains are selected for potential application on the basis of particular physiologic and functional properties, some of which may be determined in vitro. The classification and identification of a probiotic strain may give a strong indication of its typical habitat and origin. The species, or even genus name, may also indicate the strain's safety and technical applicability for use in probiotic products. Molecular typing methods such as pulsed-field gel electrophoresis, repetitive polymerase chain reaction, and restriction fragment length polymorphism are extremely valuable for specific characterization and detection of such strains selected for application as probiotics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available