4.3 Article

A novel arsenate reductase from the bacterium Thermus thermophilus HB27: Its role in arsenic detoxification

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS
Volume 1834, Issue 10, Pages 2071-2079

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbapap.2013.06.007

Keywords

Hyperthermophile; Arsenate resistance; Arsenate reductase; Protein thermal stability

Ask authors/readers for more resources

Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20 mM and 15 mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram + bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a k(cat)/K-M value of 1.2 x 10(4) M-1 s(-1). It also exhibited weak phosphatase activity with a k(cat)/K-M value of 2.7 x 10(-4) M-1 s(-1). The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural-functional characterization of a thermophilic arsenate reductase. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available