4.5 Article

Distortion-product source unmixing: A test of the two-mechanism model for DPOAE generation

Journal

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
Volume 109, Issue 2, Pages 622-637

Publisher

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.1334597

Keywords

-

Funding

  1. NIDCD NIH HHS [R01 DC03687, T32 DC00038] Funding Source: Medline

Ask authors/readers for more resources

This paper tests key predictions of the two-mechanism model for the generation of distortion-product otoacoustic emissions (DPOAEs). The two-mechanism model asserts that lower-sideband DPOAEs constitute a mixture of emissions arising not simply from two distinct cochlear locations las is now well established) but, more importantly, by two fundamentally different mechanisms: nonlinear distortion induced by the traveling wave and linear coherent reflection off pre-existing micromechanical impedance perturbations. The model predicts that (1) DPOAEs evoked by frequency-scaled stimuli (e.g., at fixed f(2)/f(1)) can be unmixed into putative distortion- and reflection-source components with the frequency dependence of their phases consistent with the presumed mechanisms of generation; (2) The putative reflection-source component of the total DPOAE closely matches the reflection-source emission (e.g., low level stimulus-frequency emission) measured at the same frequency under similar conditions. These predictions were tested by unmixing DPOAEs into components using two completely different methods: (a) selective suppression of the putative reflection source using a third tone near the distortion-product frequency and (b) spectral smoothing (or, equivalently, time-domain windowing). Although the two methods unmix in very different ways, they yield similar DPOAE components. The properties of the two DPOAE components are consistent with the predictions of the two-mechanism model. (C) 2001 Acoustical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available