4.3 Review

Protein dynamics and pressure: What can high pressure tell us about protein structural flexibility?

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbapap.2010.09.017

Keywords

High pressure; Tryptophan phosphorescence; Protein dynamics; Protein structure; Protein cavities; Azurin

Ask authors/readers for more resources

After a brief overview of NMR and X-ray crystallography studies on protein flexibility under pressure, we summarize the effects of hydrostatic pressure on the native fold of azurin from Pseudomonas aeruginosa as inferred from the variation of the intrinsic phosphorescence lifetime and the acrylamide bimolecular quenching rate constants of the buried Trp residue. The pressure/temperature response of the globular fold and modulation of its dynamical structure is analyzed both in terms of a reduction of internal cavities and of the hydration of the polypeptide. The study of the effect of two single point cavity forming mutations, F110S and 175, on the unfolding volume change (Delta V(0)) of azurin and on the internal dynamics of the protein fold under pressure demonstrate that the creation of an internal cavity will enhance the plasticity and lower the stability of the globular structure. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches. (C) 2010 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available