4.7 Article Proceedings Paper

Aromatic hydrocarbon growth from indene

Journal

CHEMOSPHERE
Volume 42, Issue 5-7, Pages 625-633

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0045-6535(00)00236-8

Keywords

indene; PAH; soot; semi-empirical MO modeling; toxic combustion byproducts

Ask authors/readers for more resources

Aromatic hydrocarbon growth from indene (C9H8), which contains the five-membered ring cyclopentadienyl moiety, was investigated experimentally in a 4 s flow reactor over a temperature range 650-850 degreesC. Major products observed were three C18H12 isomers (chrysene, benz[a]anthracene and benzo[c]phenanthrene), two C17H12 isomers (benzo[a]fluorene and benzo[b]fluorene), and two C10H8 isomers (naphthalene and benzofulvene). Reaction pathways to these products are proposed. Indenyl radical addition to indene produces a resonance-stabilized radical intermediate which further reacts by one of two routes. Rearrangement by intramolecular addition produces a bridged structure that leads to the formation of C17H12 and C10H8 products. Alternatively, beta scission produces biindenyl, which leads to the formation of C18H12 products by a ring condensation mechanism analogous to that proposed for cyclopentadiene-to-naphthalene conversion. Temperature dependencies of both the partitioning between these two routes and the product isomer distributions are consistent with thermochemical modeling using semi-empirical molecular orbital methods. The results further illustrate the role of resonance-stabilized radical rearrangement in aromatic growth and condensation of systems with cyclopentadienyl moieties. (C) 2001 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available