4.3 Article

Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags

Journal

JOURNAL OF BIOMOLECULAR NMR
Volume 64, Issue 1, Pages 39-51

Publisher

SPRINGER
DOI: 10.1007/s10858-015-0003-z

Keywords

Double electron-electron resonance; E. coli aspartate/glutamate binding protein; Integrative structural biology; Lanthanide tag; Pseudocontact shift

Funding

  1. Australian Research Council (ARC)
  2. Australia-Weizmann Making Connections grant
  3. ARC

Ask authors/readers for more resources

Pseudocontact shifts (PCS) induced by tags loaded with paramagnetic lanthanide ions provide powerful long-range structure information, provided the location of the metal ion relative to the target protein is known. Usually, the metal position is determined by fitting the magnetic susceptibility anisotropy (Delta chi) tensor to the 3D structure of the protein in an 8-parameter fit, which requires a large set of PCSs to be reliable. In an alternative approach, we used multiple Gd3+-Gd3+ distances measured by double electron-electron resonance (DEER) experiments to define the metal position, allowing Delta chi-tensor determinations from more robust 5-parameter fits that can be performed with a relatively sparse set of PCSs. Using this approach with the 32 kDa E. coli aspartate/glutamate binding protein (DEBP), we demonstrate a structural transition between substratebound and substrate-free DEBP, supported by PCSs generated by C3-Tm3+ and C3-Tb3+ tags attached to a genetically encoded p-azidophenylalanine residue. The significance of small PCSs was magnified by considering the difference between the chemical shifts measured with Tb3+ and Tm3+ rather than involving a diamagnetic reference. The integrative sparse data approach developed in this work makes poorly soluble proteins of limited stability amenable to structural studies in solution, without having to rely on cysteine mutations for tag attachment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available