3.8 Article

Spatially averaged open-channel flow over rough bed

Journal

JOURNAL OF HYDRAULIC ENGINEERING-ASCE
Volume 127, Issue 2, Pages 123-133

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9429(2001)127:2(123)

Keywords

-

Ask authors/readers for more resources

In this paper it is suggested that the double-averaged (in temporal and in spatial domains) momentum equations should be used as a natural basis for the hydraulics of rough-bed open-channel flows, especially with small relative submergence. The relationships for the vertical distribution of the total stress for the simplest case of 2D, steady, uniform. spatially averaged flow over a rough bed with flat free surface are derived. These relationships explicitly include the form-induced stresses and form drag as components of the total stress. Using this approach, we define three types of rough-bed flows: (1) Flow with high relative submergence; (2) how with small relative submergence; and (3) flow over a partially inundated rough bed. The relationships for the double-averaged velocity distribution and hydraulic resistance for all three flow types are derived and compared with measurements where possible. The double-averaged turbulent and form-induced intensities and stresses for the case of regular spherical-segment-type roughness show the dominant role of the double-averaged turbulence stresses and form drag in momentum transfer in the near-bed region.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available