4.4 Article

Subthreshold inactivation of Na+ and K+ channels supports activity-dependent enhancement of back-propagating action potentials in hippocampal CA1

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 85, Issue 2, Pages 1013-1016

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.2001.85.2.1013

Keywords

-

Funding

  1. NINDS NIH HHS [NS-36982] Funding Source: Medline

Ask authors/readers for more resources

Back-propagating action potentials in CA1 pyramidal neurons may provide the postsynaptic dendritic depolarization necessary for the induction of long-term synaptic plasticity. The amplitudes of back-propagating action potentials are not all or none but are limited in amplitude by dendritic A-type K+ channels. Previous studies of back-propagating action potentials have suggested that prior depolarization of the dendritic membrane reduces A-type channel availability through inactivation, resulting in an enhanced, or boosted, dendritic action potential. However, inactivation kinetics in the subthreshold potential range have not been directly measured. Furthermore, the corresponding rates of Na+ channel inactivation with depolarization have not been considered. Here we report in cell-attached patches (150-220 mum from the soma, 32 degreesC) that at 20-mV positive to rest, A-type K+ channels inactivated with a single exponential time constant of 6 ms, whereas Na+ channels inactivated with a time constant of 37 ms. The ratio of available Na+ to K+ current increased as the duration of the depolarization increased. Thus the subthreshold properties of Na+ and A-type K+ channels provide a mechanism by which information about the level of synaptic activity may be encoded in the amplitude of back-propagating action potentials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available