4.5 Review

Challenges measuring cardiomyocyte renewal

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamcr.2012.10.029

Keywords

Cardiac regeneration; Cardiomydgenesis; Cardiomyocyte proliferation

Funding

  1. NHLBI NIH HHS [R01 HL109205, R01 HL083126] Funding Source: Medline

Ask authors/readers for more resources

Interventions to effect therapeutic cardiomyocyte renewal have received considerable interest of late. Such interventions, if successful, could give rise to myocardial regeneration in diseased hearts. Regenerative interventions fall into two broad categories, namely approaches based on promoting renewal of pre-existing cardiomyocytes and approaches based on cardiomyogenic stem cell activity. The latter category can be further subdivided into approaches promoting differentiation of endogenous cardiomyogenic stem cells, approaches wherein cardiomyogenic stem cells are harvested, amplified or enriched ex vivo, and subsequently engrafted into the heart, and approaches wherein an exogenous stem cell is induced to differentiate in vitro, and the resulting cardiomyocytes are engrafted into the heart. There is disagreement in the literature regarding the degree to which cardiomyocyte renewal occurs in the normal and injured heart, the mechanism(s) by which this occurs, and the degree to which therapeutic interventions can enhance regenerative growth. This review discusses several caveats which are encountered when attempting to measure cardiomyocyte renewal in vivo which likely contribute, at least in part, to the disagreement regarding the levels at which this occurs in normal, injured and treated hearts. This article is part of a Special Issue entitled: Cardiomyocyte biology: Cardiac pathways of differentiation, metabolism and contraction. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available