4.5 Article

IL-6 is produced by adipose-derived stromal cells and promotes osteogenesis

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH
Volume 1833, Issue 12, Pages 2608-2616

Publisher

ELSEVIER
DOI: 10.1016/j.bbamcr.2013.06.025

Keywords

TLR; IL-6; STAT3; Osterix; Osteogenesis; Adipose-derived stromal cell

Ask authors/readers for more resources

Although Toll-like receptors (TLRs) have been implicated in the regulation of stem cell functions, their role in osteogenic differentiation of adipose-derived stromal cells (ASCs) has not been reported. We found that ASCs express a restricted subset of TLRs, including TLR1-TLR5, and that TLR agonists such as Pam3CSK4 (TLR1/2 agonist), polyinosinic:polycytidylic acid (TLR3 agonist), lipopolysaccharide (TLR4 agonist), and flagellin (TLR5 agonist), but not R848 (TLR7/8 agonist), consistently induced osteogenic differentiation in murine-derived ASCs, which coincided with the TLR expression pattern of ASCs. Cytoldne expression profiles induced by TLR agonists and results from subsequent functional assays indicated that interleukin-6 (IL-6) together with soluble IL-6 receptor (sIL-6R) enhanced osteogenic differentiation of ASCs by activating STAT3. Small interfering RNA (siRNA)mediated STAT3-silencing blunted osteogenesis and the expression of osteogenic markers, whereas STAT3 overexpression resulted in an increase in osteogenesis. Consistently, STAT3 inhibitor treatment reduced osteogenesis, STAT3 phosphorylation, and expression of osteogenic markers including ostedx. Chromatin immunoprecipitation (ChIP) assays indicated that STAT3 binding to the STAT3-binding sites on the osterix promoter increased during IL-6-stimulated osteogenesis. Our results thus establish TLRs as novel regulators of ASCs which signal through IL-6/STAT3 pathway and induce osterix expression as a part of the osteogenesis. (c) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available