4.5 Article

Functional interaction of protein kinase CK2 and activating transcription factor 4 (ATF4), a key player in the cellular stress response

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamcr.2012.10.025

Keywords

Phosphorylation; Protein kinase; Transcription; Transcription factor; Protein stability

Ask authors/readers for more resources

Protein kinase CK2 is a pleiotropic enzyme, which is implicated in the regulation of numerous biological processes. It seems to regulate the various functions by binding to other proteins and by phosphorylation of many different substrates. Here, we identified the activating transcription factor 4 (ATF4), an essential component of the ER stress signaling, as a new binding partner and a new substrate of CK2 in vitro and in vivo. Bifluorescence complementation analysis (BiFC) revealed that CK2 alpha and ATF4 associate in the nucleus. By using mutants of ATF4 we identified serine 215 as the main CK2 phosphorylation site. The ATF4 S215A mutant turned out to be more stable than the wild-type form. We further noticed that an inhibition of CK2 caused an increased transcription of the ATF4 gene. Analyses of the transcription factor activity revealed an impaired activity of the CK2 phosphorylation mutant of ATF4. Thus, we show that (i) ATF4 is a binding partner of CK2 alpha (ii) ATF4 is a substrate of CK2, (iii) the phosphorylation of ATF4 by CK2 influences the stability of ATF4, (iv) the transcription of ATF4 is regulated by CK2 and (v) the transcription factor activity of ATF4 is regulated by the CK2 phosphorylation of ATF4. Thus, CK2 plays an essential role in the regulation of the ER-stress induced signaling pathway. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available