4.0 Review

Regulation of the amylolytic and (hemi-)cellulolytic genes in aspergilli

Journal

JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY
Volume 47, Issue 1, Pages 1-19

Publisher

MICROBIOL RES FOUNDATION
DOI: 10.2323/jgam.47.1

Keywords

amylases; AmyR; Aspergillus spp.; cellulases; Hap complex; transcriptional activator; XlnR; xylanases

Ask authors/readers for more resources

Filamentous fungi produce high levels of polysaccharide-degrading enzymes and are frequently used for the production of industrial enzymes. Because of the high secretory capacity for enzymes, filamentous fungi are effective hosts for the production of foreign proteins. Genetic studies with Aspergillus nidulans have shown pathway-specific regulatory systems that control a set of genes that must be expressed to catabolize particular substrates. Besides the pathway-specific regulation, wide domain regulatory systems exist that affect a great many individual genes in different pathways. A molecular analysis of various regulated systems has confirmed the formal models derived from purely genetic data. In general, many genes are subject to more than one regulatory system. In this article, we describe two transcriptional activators, AmyR and XlnR, and an enhancer, Hap complex, in view of their regulatory roles in the expression of the amylolytic and (hemi-)cellulolytic genes mainly in aspergilli. The amyR gene has been isolated as a transcriptional activator involved in the expression of amylolytic genes from A. oryzae, A. niger, and A. nidulans, and the xlnR gene, which has been isolated from A. niger and A. oryzae, activates the expression of xylanolytic genes as well as some cellulolytic genes in aspergilli. Both AmyR and XlnR have a typical zinc binuclear cluster DNA-binding domain at their N-terminal regions. Hap complex, a CCAAT-binding complex, enhances the overall promoter activity and increases the expression levels of many fungal genes, including the Taka-amylase A gene. Hap complex comprises three subunits, HapB, HapC, and HapE, in A. nidulans and A. oryzae as well as higher eukaryotes, whereas HAP complex in Saccharomyces cerevisiae and Kluyveromyces lactis has the additional subunit, Hap4p, which is responsible for the transcriptional activation. Hap complex is suggested to enhance transcription by remodeling the chromatin structure. The regulation of gene expression in filamentous fungi of industrial interest could follow basically the same general principles as those discovered in A. nidulans. The knowledge of regulation of gene expression in combination with traditional genetic techniques is expected to be increasingly utilized for strain breeding. Furthermore, this knowledge provides a basis for the rational application of transcriptional regulators for biotechnological processes in filamentous fungi.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available