3.8 Article

The sugar model: Catalysis by amines and amino acid products

Journal

ORIGINS OF LIFE AND EVOLUTION OF THE BIOSPHERE
Volume 31, Issue 1-2, Pages 71-86

Publisher

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1006750423942

Keywords

amine catalysis; amino acid catalysis; autocatalysis; formose reaction; molecular evolution; prebiotic synthesis; sugar chemistry

Categories

Ask authors/readers for more resources

Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonyl-containing products under the conditions studied (pH 5.5 and 50 degreesC). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha -aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available