4.7 Review

From genome to function by studying eQTLs

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE
Volume 1842, Issue 10, Pages 1896-1902

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbadis.2014.04.024

Keywords

eQTL; Gene expression; Genetics; Micro-array; RNA-seq

Ask authors/readers for more resources

Genome-wide association studies (GWASs) have shown a large number of genetic variants to be associated with complex diseases. The identification of the causal variant within an associated locus can sometimes be difficult because of the linkage disequilibrium between the associated variants and because most GWAS loci contain multiple genes, or no genes at all. Expression quantitative trait locus (eQTL) mapping is a method used to determine the effects of genetic variants on gene expression levels. eQTL mapping studies have enabled the prioritization of genetic variants within GWAS loci, and have shown that trait-associated single nucleotide polymorphisms (SNPs) often function in a tissue- or cell type-specific manner, sometimes having downstream effects on completely different chromosomes. Furthermore, recent RNA-sequencing (RNA-seq) studies have shown that a large repertoire of transcripts is available in cells, which are actively regulated by (trait-associated) variants. Future eQTL mapping studies will focus on broadening the range of available tissues and cell types, in order to determine the key tissues and cell types involved in complex traits. Finally, large meta-analyses will be able to pinpoint the causal variants within the trait-associated loci and determine their downstream effects in greater detail. This article is part of a Special Issue entitled: From Genome to Function. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available