4.8 Article

Role of molecular oscillations in generating behavioral rhythms in Drosophila

Journal

NEURON
Volume 29, Issue 2, Pages 453-467

Publisher

CELL PRESS
DOI: 10.1016/S0896-6273(01)00218-5

Keywords

-

Categories

Ask authors/readers for more resources

Circadian oscillations of clock gene products are thought to provide time-of-day signals that drive overt rhythms. In Drosophila, RNA and protein levels of the period and timeless genes oscillate and the proteins autoregulate their transcription. To test the relevance of these oscillations, we expressed period and timeless under control of constitutively active promoters. Constitutive expression of either RNA supported protein cycling and behavioral rhythms in the respective null mutant, although constitutive timeless was less effective than constitutive period. Constitutive expression of both genes restored behavioral rhythms that showed deficits in photic resetting and drove cyclic expression of the clock-controlled RNA, vrille. Overexpression of either period or timeless, but especially timeless, attenuated behavioral rhythmicity and protein cycling in lateral neurons. We propose that the two proteins must cycle to drive rhythmic expression of downstream genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available