4.7 Article

GPI-anchored proteins: now you see 'em, now you don't

Journal

FASEB JOURNAL
Volume 15, Issue 2, Pages 545-548

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.00-0415hyp

Keywords

trypanosome; toxoplasma; CD52; CD59; vaccine; conformational epitope

Ask authors/readers for more resources

Many cell surface proteins are attached to membranes via covalent glycosylphosphatidylinositol (GPI) anchors that are posttranslationally linked to the carboxy-terminus of the protein. Removal of the GPI lipid moieties by enzymes such as GPI-specific phospholipases or by chemical treatments generates a soluble form of the protein that no longer associates with lipid bilayers, We have found that the removal of lipid moieties from the anchor can also have a second, unexpected effect on the antigenicity of a variety of GPI-anchored surface molecules, suggesting that they undergo major conformational changes. Several antibodies raised against GPI-anchored proteins from protozoa and mammalian cells were no longer capable of binding the corresponding antigens once the lipid moieties had been removed. Conversely, antibodies raised against soluble (delipidated) forms reacted poorly with intact GPI-anchored proteins, but showed enhanced binding after treatment with phospholipases. In the light of these findings, we have reevaluated a number of publications on GPI-anchored proteins. Many of the results are best explained by lipid-dependent changes in antigenicity, indicating this might be a widespread phenomenon. Since many pathogen surface proteins are GPI-anchored, researchers should be aware that the presence or absence of the GPI lipid moieties may have a major impact on the host immune response to infection or vaccination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available