4.7 Article

Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress

Journal

PLANT SCIENCE
Volume 160, Issue 3, Pages 505-515

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/S0168-9452(00)00418-0

Keywords

oxidative stress; Solanum curtilobum; Solanum tuberosum; superoxide dismutase isozymes; water stress

Ask authors/readers for more resources

In photosynthetic tissues superoxide dismutase (SOD) plays an important role by scavenging the superoxide radical whose production is an usual reaction in chloroplast thylakoids. To test the differential response of SOD, two Andean potato species differing in frost resistance, Solamum curtilobum (frost resistant) and Solanum tuberosum (frost sensitive), were subjected to methyl viologen-mediated oxidative stress and polyethylene glycol (PEG)-induced water stress. A significant increment (approximately two-fold) in total SOD and FeSOD activity, which occupied about 50% of the total activity, was found when leaves of S. curtilobum were exposed to water stress. In contrast, the SOD activity in leaves of S. tuberosum remained unchanged. The exposure of leaves of S. curtilobum to oxidative stress increased total SOD and FeSOD activity by 350%. High correlation between SOD activity and the F-v/F-m, ratio under both PEG induced water stress and MV-mediated oxidative stress was observed. This suggests that SOD can protect PSII from superoxide generated by oxidative and water stress. The higher SOD activity could be an important mechanism to explain why some natives Andean potato like S. curtilobum are more resistant to abiotic stresses than S. tuberosum, (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available