4.7 Article

Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å

Journal

STRUCTURE
Volume 9, Issue 2, Pages 125-132

Publisher

CELL PRESS
DOI: 10.1016/S0969-2126(01)00566-4

Keywords

-

Ask authors/readers for more resources

Background: Arsenite oxidase from Alcaligenes faecalis NCIB 8687 is a molybdenum/iron protein involved in the detoxification of arsenic. It is induced by the presence of AsO2- (arsenite) and functions to oxidize (AsO2-)-O-III, which binds to essential sulfhydryl groups of proteins and dithiols, to the relatively less toxic (AsO43-)-O-V (arsenate) prior to methylation. Results: Using a combination of multiple isomorphous replacement with anomalous scattering (MIRAS) and multiple-wavelength anomalous dispersion (MAD) methods, the crystal structure of arsenite oxidase was determined to 2.03 Angstrom in a P2(1) crystal form with two molecules in the asymmetric unit and to 1.64 Angstrom in a P1 crystal form with four molecules in the asymmetric unit. Arsenite oxidase consists of a large subunit of 825 residues and a small subunit of approximately 134 residues. The large subunit contains a Mo site, consisting of a Mo atom bound to two pterin cofactors, and a [3Fe-4S] cluster. The small subunit contains a Rieske-type [2Fe-2S] site. Conclusions: The large subunit of arsenite oxidase is similar to other members of the dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes, particularly the dissimilatory periplasmic nitrate reductase from Desulfovibrio desulfuricans, but is unique in having no covalent bond between the polypeptide and the Mo atom. The small subunit has no counterpart among known Mo protein structures but is homologous to the Rieske [2Fe-2S] protein domain of the cytochrome be, and cytochrome b(6)f complexes and to the Rieske domain of naphthalene 1,2-dioxygenase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available