4.7 Article

Modelling the two-phase flow and current distribution along a vertical gas-evolving electrode

Journal

JOURNAL OF FLUID MECHANICS
Volume 428, Issue -, Pages 249-272

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112000002639

Keywords

-

Ask authors/readers for more resources

The bubbly two-phase flow and electric current density distribution along a single, vertical, gas-evolving electrode are modelled and the results of a boundary layer analysis are presented. Existing empirical models for particle transport in sheared and sedimenting suspensions are adopted for the bubble mixture to close the two-phase model. Ionic species concentrations are shown to be essentially homogeneous as the mixing effect of the bubble suspension usually is much larger than dispersion by molecular diffusion even at laminar flow conditions. The non-uniformity of the bubble distribution along the electrode results in a non-uniform current density distribution, which agrees well with existing experimental findings in the literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available