4.5 Article

Quantitative determination of saccharide surfactants in protein samples by liquid chromatography coupled to electrospray ionization mass spectrometry

Journal

ANALYTICAL BIOCHEMISTRY
Volume 289, Issue 2, Pages 124-129

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/abio.2000.4939

Keywords

saccharide surfactants; n-octyl-beta-D-glucopyranoside; quantification; liquid chromatography; electrospray ionization; mass spectrometry

Ask authors/readers for more resources

A direct and highly selective method, combining liquid chromatography (LC) with electrospray ionization mass spectrometry (ESI-MS), has been developed for quantifying saccharide surfactants. Saccharide surfactants, such as n-octyl-beta -D-glucopyranoside (NOG), are widely used to solubilize or refold membrane-bound or lipophilic proteins. In the present study, we have developed an LC-MS method to quantify NOG in protein samples. Protein-bound NOG was completely dissociated from proteins by reversed-phase LC, allowing the total amount of saccharide surfactant in protein samples to be quantified by MS. A chemical analog of NOG was used as an internal standard for improving the reproducibility of the method. Linearity was found in the range of 10 mug/mL-1.0 mg/mL NOG concentrations. Seven major surfactant oligomeric ions were detected under the ionization conditions applied and their relative abundance was essentially unchanged over the range of 0.05-1.0 mg/mL NOG concentrations. Consequently, ions with characteristic mass-to-charge ratios could be used for quantification of NOG. Analytical accuracy of the method was examined by determining the amounts of NOG recovered from apolipoprotein A-I and myoglobin samples spiked with NOG. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available