4.7 Article

Gravitational field and equations of motion of spinning compact binaries to 2.5 post-Newtonian order

Journal

PHYSICAL REVIEW D
Volume 63, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.63.044006

Keywords

-

Ask authors/readers for more resources

We derive spin-orbit coupling effects on the gravitational field and equations of motion of compact binaries in the 2.5 post-Newtonian approximation to general relativity, one PN order beyond when spin effects first appear. Our method iu based on that of Blanchet, Faye, and Ponsot, who use a past-Newtonian metric valid for general (continuous) fluids and represent pointlike compact objects with a delta -function stress-energy tensor, regularizing divergent terms by taking the Hadamard finite part. To obtain post-Newtonian spin effects, we use a different delta -function stress-energy tensor introduced by Bailey and Israel. In a future paper we will use the 2.5PN equations of motion For spinning bodies to derive the gravitational-wave luminosity and phase evolution of binary inspirals, which will be useful in constructing matched filters for signal analysis. The gravitational field derived here may help in posing initial data for numerical evolutions of binary black hole mergers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available