4.5 Article

Detection of individual phospholipids in lipid mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry:: Phosphatidylcholine prevents the detection of further species

Journal

ANALYTICAL BIOCHEMISTRY
Volume 289, Issue 2, Pages 202-216

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/abio.2000.4926

Keywords

MALDI-TOF MS; phospholipase A(2); phospholipids; lysophospholipids

Ask authors/readers for more resources

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is an established tool for the analysis of proteins, whereas it gained by far less interest in the field of lipid analysis. This method works well with phospholipids as well as organic cell extracts and provides high sensitivity and reproducibility. The aim of the present paper is to extend our previous studies to the analysis of lysophospholipids and phospholipid mixtures. To study the suitability of MALDI-TOF mass spectrometry for the analysis of lysophospholipids, different phospholipids like phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, and phosphatidylinositol as well as their mixtures were digested with phospholipase A(2). Positive and negative ion mass spectra of all phospholipids before and after digestion were recorded. In all these cases, the molecular ions of the expected digestion products could be detected and only a very small extent of further fragmentation was observed. On the other hand, spectra of phospholipid mixtures containing phosphatidylcholine were strongly dominated by phosphatidylcholine and lysophosphatidylcholine signals, which prevented the detection of further phospholipids even if those lipids were present in comparable amounts. This is of paramount interest for the analysis of tissue and cell extracts. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available