4.7 Article

The peculiar motions of early-type galaxies in two distant regions - VII. Peculiar velocities and bulk motions

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 321, Issue 2, Pages 277-305

Publisher

OXFORD UNIV PRESS
DOI: 10.1046/j.1365-8711.2001.04044.x

Keywords

galaxies : clusters; galaxies : distance and redshifts; galaxies : elliptical and lenticular, cD; galaxies : fundamental parameters; large-scale structure of Universe

Ask authors/readers for more resources

We present peculiar velocities for 85 clusters of galaxies in two large volumes at distances between 6000 and 15 000 km s(-1) in the directions of Hercules-Corona Borealis and Perseus-Pisces-Cetus (the EFAR sample). These velocities are based on Fundamental Plane (FP) distance estimates for early-type galaxies in each cluster. We fit the FP using a maximum likelihood algorithm which accounts for both selection effects and measurement errors, and yields FP parameters with smaller bias and variance than other fitting procedures. We obtain a best-fitting FP with coefficients consistent with the best existing determinations. We measure the bulk motions of the sample volumes using the 50 clusters with the best-determined peculiar velocities. We find that the bulk motions in both regions are small, and consistent with zero at about. the 5 per cent level. The EFAR results are in agreement with the small bulk motions found by Dale et al. on similar scales, but are inconsistent with pure dipole motions having the large amplitudes found by Lauer & Postman and Hudson et al. The alignment of the EFAR sample with the Lauer & Postman dipole produces a strong rejection of a large-amplitude bulk motion in that direction, but the rejection of the Hudson et al. result is less certain because their dipole lies at a large angle to the main axis of the EFAR sample. We employ a window function covariance analysis to make a detailed comparison of the EFAR peculiar velocities with the predictions of standard cosmological models. We find that the bulk motion of our sample is consistent with most cosmological models that approximately reproduce the shape and normalization of the observed galaxy power spectrum. We conclude that existing measurements of large-scale bulk motions provide no significant evidence against standard models for the formation of structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available