4.6 Article

Lipidomics reveals membrane lipid remodelling and release of potential lipid mediators during early stress responses in a murine melanoma cell line

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.bbalip.2010.04.011

Keywords

Lipidomics; Temperature stress; Stress signal; Membrane fluidity; Phospholipase

Funding

  1. European Union [HEALTH-F4-2008-202272]
  2. Hungarian National Scientific Research Foundation [OTKA NK 68379, OTKA NN 76716]

Ask authors/readers for more resources

Membranes are known to respond rapidly to various environmental perturbations by changing their composition and microdomain organization. In previous work we showed that a membrane fluidizer benzyl alcohol (BA) could mimic the effects of heat stress and enhance heat shock protein synthesis in different mammalian cells. Here we explore heat- and BA-induced stress further by characterizing stress-induced membrane lipid changes in mouse melanoma 1316 cells. Lipidomic fingerprints revealed that membrane stress achieved either by heat or BA resulted in pronounced and highly specific alterations in lipid metabolism. The loss in polyenes with the concomitant increase in saturated lipid species was shown to be a consequence of the activation of phopholipases (mainly phopholipase A(2) and C). A phospholipase C-diacylglycerol lipase-monoacylglycerol lipase pathway was identified in B16 cells and contributed significantly to the production of several lipid mediators upon stress including the potent heat shock modulator, arachidonic acid. The accumulation of cholesterol, ceramide and saturated phosphoglyceride species with raft-forming properties observed upon both heat and BA treatments of B16 cells may explain the condensation of ordered plasma membrane domains previously detected by fluorescence microscopy and may serve as a signalling platform in stress responses or as a primary defence mechanism against the noxious effects of stresses. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available