4.7 Article

Boundary layer receptivity to free-stream sound on elliptic leading edges of flat plates

Journal

JOURNAL OF FLUID MECHANICS
Volume 429, Issue -, Pages 1-21

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112000002548

Keywords

-

Ask authors/readers for more resources

The leading-edge receptivity to acoustic waves of two-dimensional bodies is investigated using a spatial solution of the Navier-Stokes equations in vorticity/stream function form in general curvilinear coordinates. The free stream is composed of a uniform flow with a superposed periodic velocity fluctuation of small amplitude. The method follows that of Haddad & Corke (1998), in which the solution for the basic flow and the linearized perturbation flow are solved separately. The initial motivation for the work comes from past physical experiments for flat plates with elliptic leading edges, which indicated narrow frequency bands of higher neutral-curve Branch I receptivity. We investigate the same conditions in our simulations, as well as on a parabolic leading edge. The results document the importance of the leading edge, junction between the ellipse and hat plate, and pressure gradient to the receptivity coefficient at Branch I. Comparisons to the past experiments and other numerical simulations showed the influence of the elliptic leading-edge/flat-plate joint as an additional site of receptivity which, along with the leading edge, provides a wavelength selection mechanism which favours certain frequencies through linear superposition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available