4.6 Article

Multiple-valued static CMOS memory cell

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/82.924070

Keywords

CMOS memory integrated circuits; flip-flops; hysteresis; multivalued logic circuits; network hardware; random access memories

Ask authors/readers for more resources

The conventional flip-flop core is generalized to multistability in full static CMOS without compromising the standard binary CMOS features such as ratioless device sizing, negligible static power consumption, and wide noise margins. The proposed multiple-level cell is built with eight devices for three-level operation and necessitates four more devices for each additional level. It can be arranged with a proper address scheme to function as a RAM cell, D-latch, or synaptic memory. Experimental work verifies four-level operation with 3-V supply. Simulations indicate the possibility of six-level storage in 5-V operation. The cell retains noise margins one threshold voltage wide even at such high-level operation. This is made possible by exploiting the dynamic hysteresis associated with the transfer characteristic of an inverter operating with very low rail-to-rail voltage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available