4.5 Review

Structure and function of preQ1 riboswitches

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.bbagrm.2014.04.019

Keywords

Queuosine; tRNA modification; NMR; X-ray crystallography; Queuine; PreQ(0)

Funding

  1. U.S. Department of Energy [DE-FC03-02ER63421]
  2. National Institutes of Health [GM48123]
  3. UCLA Tumor Biology USHHS Ruth L. Kirschstein NRSA T32 award [CA009056]

Ask authors/readers for more resources

PreQ(1) riboswitches help regulate the biosynthesis and transport of preQ(1) (7-aminomethyl-7-deazaguanine), a precursor of the hypermodified guanine nucleotide queuosine (Q), in a number of Firmicutes, Proteobacteria, and Fusobacteria. Queuosine is almost universally found at the wobble position of the anticodon in asparaginyl, tyrosyl, histidyl and aspartyl tRNAs, where it contributes to translational fidelity. Two classes of preQ(1) riboswitches have been identified (preQ(1)-I and preQ(1)-II), and structures of examples from both classes have been determined. Both classes form H-type pseudoknots upon preQi binding, each of which has distinct unusual features and modes of preQ(1) recognition. These features include an unusually long loop 2 in preQ(1)-I pseudoknots and an embedded hairpin in loop 3 in preQ(1)-II pseudoknots. PreQ(1)-I riboswitches are also notable for their unusually small aptamer domain, which has been extensively investigated by NMR, X-ray crystallography, FRET, and other biophysical methods. Here we review the discovery, structural biology, ligand specificity, cation interactions, folding, dynamics, and applications to biotechnology of preQi riboswitches. This article is part of a Special Issue entitled: Riboswitches. (c) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available