4.5 Article Proceedings Paper

Neural representation of sound amplitude by functionally different auditory receptors in crickets

Journal

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
Volume 109, Issue 3, Pages 1247-1260

Publisher

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.1348004

Keywords

-

Ask authors/readers for more resources

The physiological characteristics of auditory receptor fibers (ARFs) of crickets, a model system for studying auditory behaviors and their neural mechanisms, are investigated. Unlike auditory receptor neurons of many animals, cricket ARFs fall into three distinct populations based on characteristic frequency (CF) [Imaizumi and Pollack, J. Neurosci. 19, 1508-1516 (1999)]. Two of these have CFs similar to the frequency component of communication signals or of ultrasound produced by predators, and a third population has intermediate CF. Here, sound-amplitude coding by ARFs is examined to gain insights to how behaviorally relevant sounds are encoded by populations of receptor neurons. ARFs involved in acoustic communication comprise two distinct anatomical types, which also differ in physiological parameters (threshold, response slope, dynamic range, minimum latency, and sharpness of tuning). Thus, based on CE; and anatomy, ARFs comprise four populations. Physiological parameters are diverse, but within each population they are systematically related to threshold. The details of these relationships differ among the four populations. These findings open the possibility that different ARF populations differ in functional organization. (C) 2001 Acoustical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available