4.5 Article

hnRNP H1 and intronic G runs in the splicing control of the human rpL3 gene

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbagrm.2010.01.008

Keywords

Alternative splicing; hnRNP H1; NMD; Ribosomal protein; Splicing regulation

Funding

  1. MIUR
  2. Fondo Investimenti Ricerca di Base (FIRB) [2001]
  3. Regione Campania [L5/2002]

Ask authors/readers for more resources

By generating mRNA containing a premature termination codon (PTC), alternative splicing (AS) can quantitatively regulate the expression of genes that are degraded by nonsense-mediated mRNA decay (NMD). We previously demonstrated that AS-induced retention of part of intron 3 of rpL3 pre-mRNA produces an mRNA isoform that contains a PTC and is targeted for decay by NMD. We also demonstrated that overexpression of rpL3 downregulates canonical splicing and upregulates the alternative splicing of its pre-mRNA. We are currently investigating the molecular mechanism underlying rpL3 autoregulation. Here we report that the heterogeneous nuclear ribonucleoprotein (hnRNP) H1 is a transacting factor able to interact in vitro and in vivo with rpL3 and with intron 3 of the rpL3 gene. We investigated the role played by hnRNP H1 in the regulation of splicing of rpL3 pre-mRNA by manipulating its expression level. Depletion of hnRNP H1 reduced the level of the PTC-containing mRNA isoform, whereas its overexpression favored the selection of the cryptic 3' splice site of intron 3. We also identified and characterized the cis-acting regulatory elements involved in hnRNP H1-mediated regulation of splicing. RNA electromobility shift assay demonstrated that hnRNP H1 specifically recognizes and binds directly to the intron 3 region that contains seven copies of G-rich elements. Site-directed mutagenesis analysis and in vivo studies showed that the G3 and G6 elements are required for hnRNP H1-mediated regulation of rpL3 pre-mRNA splicing. We propose a working model in which rpL3 recruits hnRNP H1 and, through cooperation with other splicing factors, promotes selection of the alternative splice site. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available