4.5 Article

Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging

Journal

MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH
Volume 488, Issue 1, Pages 65-76

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S1383-5742(00)00059-4

Keywords

DNA damage; sequence specificity; oxygen radical; reactive species; UV

Ask authors/readers for more resources

Reactive species generated by chemicals and UV radiation can cause sequence-specific DNA damage and play important roles in mutagenesis, carcinogenesis and aging. We have investigated sequence specificity of oxidative stress-mediated DNA damage by using P-32-labeled DNA fragments obtained from the human c-Ha-ras-1 and p53 genes. Free hydroxyl radical causes DNA damage with no marked site specificity. Reactive nitrogen species, sulfate radicals, nitrogen-centered radicals, benzoyloxyl radical and alkoxyl radical show different sequence specificity. Benzoyloxyl radical specifically causes damage to the 5'-G in GG sequence. UVA radiation also causes DNA damage at this site through electron transfer in the presence of certain photosensitizers. The 5'-G in GG sequence is easily oxidized because a large part of the highest occupied molecular orbital is distributed on this site. On the basis of these findings, the sequence specificity of DNA damage is presumably determined by (a) redox potential of reactive species; (b) ionization potential of DNA bases; and (c) site-specific binding of metal ion to DNA. Here we discuss the mechanisms of sequence-specific DNA damage in relation to carcinogenesis and aging. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available