4.5 Article

Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Volume 1828, Issue 9, Pages 2091-2098

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamem.2013.05.014

Keywords

Amyloid; IAPP; Model membranes (LUV SUV, bicelles, micelles); Phospholipid; Aggregation kinetics; Fibril morphology

Ask authors/readers for more resources

Human islet amyloid polypeptide (IAPP) forms amyloid fibrils in the pancreatic islets of patients suffering from type 2 diabetes mellitus (T2DM). The formation of IAPP fibrils has been shown to cause membrane damage which most likely is responsible for the death of pancreatic islet beta-cells during the pathogenesis of T2DM. Several studies have demonstrated a clear interaction between IAPP and lipid membranes. However the effect of different lipid compositions and of various membrane mimetics (including micelles, bicelles, SUV and LUV) on fibril formation kinetics and fibril morphology has not yet systematically been analysed. Here we report that the interaction of IAPP with various membrane models promoted different processes of fibril formation. Our data reveal that in SDS and DPC micelles, IAPP adopts a stable alpha-helical structure for several days, suggesting that the micelle models may stabilize monomeric or small oligomeric species of LAPP. In contrast, zwitterionic DMPC/DHPC bicelles and DOPC SUV accelerate the fibril formation compared to zwitterionic DOPC LUV, indicating that the size of the membrane model and its curvature influence the fibrillation process. Negatively charged membranes decrease the lag-time of the fibril formation kinetics while phosphatidylethanolamine and cholesterol have an opposite effect, probably due to the modulation of the physical properties of the membrane and/or due to direct interactions with IAPP within the membrane core. Finally, our results show that the modulation of lipid composition influences not only the growth of fibrils at the membrane surface but also the interactions of beta-sheet oligomers with membranes. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available