4.4 Article

Composite piezoelectric spinal fusion implant: Effects of stacked generators

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jbm.b.33365

Keywords

spine; fusion; interbody; electrical stimulation

Funding

  1. Institute for Advancing Medical Innovation

Ask authors/readers for more resources

Spinal fusion surgeries have a high failure rate for difficult-to-fuse patients. A piezoelectric spinal fusion implant was developed to overcome the issues with other adjunct therapies. Stacked generators were used to improve power generation at low electrical load resistances. The effects of the number of layers on average maximum power and the optimal electrical load resistance were characterized. The effects of mechanical preload, load frequency, and amplitude on maximum power and optimal electrical load resistance were also characterized. Increasing the number of layers from one to nine was found to lower the optimal electrical load resistance from 1.00 G to 16.78 M while maintaining maximum power generation. Mechanical preload did not have a significant effect on power output or optimal electrical load resistance. Increases in mechanical loading frequency increased average maximum power, while decreasing the optimal electrical load resistance. Increases in mechanical loading amplitude increased average maximum power output without affecting the optimal electrical load resistance. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 158-164, 2016.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available