4.5 Article

Structural and thermodynamic insight into the process of weak dimerization of the ErbB4 transmembrane domain by solution NMR

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Volume 1818, Issue 9, Pages 2158-2170

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamem.2012.05.001

Keywords

Receptor tyrosine kinase; Transmembrane domain; Dimerization; Spatial structure; Thermodynamics; NMR

Funding

  1. Russian Foundation for Basic Research [12-04-01816]
  2. Russian Academy of Science
  3. Russian Funds Investment Group
  4. Federal Target Programs [P1276, 16.740.11.0195, 16.512.11.2172]
  5. Beirit K.A.

Ask authors/readers for more resources

Specific helix-helix interactions between the single-span transmembrane domains of receptor tyrosine kinases are believed to be important for their lateral dimerization and signal transduction. Establishing structure-function relationships requires precise structural-dynamic information about this class of biologically significant bitopic membrane proteins. ErbB4 is a ubiquitously expressed member of the HER/ErbB family of growth factor receptor tyrosine kinases that is essential for the normal development of various adult and fetal human tissues and plays a role in the pathobiology of the organism. The dimerization of the ErbB4 transmembrane domain in membrane-mimicking lipid bicelles was investigated by solution NMR. In a bicellar DMPC/DHPC environment, the ErbB4 membrane-spanning alpha-helices (651-678)(2) form a right-handed parallel dimer through the N-terminal double GG4-like motif A(655)GxxGG(660) in a fashion that is believed to permit proper kinase domain activation. During helix association, the dimer subunits undergo a structural adjustment (slight bending) with the formation of a network of inter-monomeric polar contacts. The quantitative analysis of the observed monomer-dimer equilibrium provides insights into the kinetics and thermodynamics of the folding process of the helical transmembrane domain in the model environment that may be directly relevant to the process that occurs in biological membranes. The lipid bicelles occupied by a single ErbB4 transmembrane domain behave as a true (ideal) solvent for the peptide, while multiply occupied bicelles are more similar to the ordered lipid microdomains of cellular membranes and appear to provide substantial entropic enhancement of the weak helix-helix interactions, which may be critical for membrane protein activity. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available