3.8 Article Proceedings Paper

Discrete Lorentzian quantum gravity

Journal

NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS
Volume 94, Issue -, Pages 96-107

Publisher

ELSEVIER
DOI: 10.1016/S0920-5632(01)00957-4

Keywords

-

Ask authors/readers for more resources

Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated in a background-independent way. After summarizing the status quo of discrete covariant lattice models for four-dimensional quantum gravity, I describe a new class of discrete gravity models whose starting point is a path integral over Lorentzian (rather than Euclidean) space-time geometries. A number of interesting and unexpected results that have been obtained for these dynamically triangulated models in two and three dimensions make discrete Lorentzian gravity a promising candidate for a non-trivial theory of quantum gravity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available