4.7 Article

Lysosomal enzymes in the macronucleus of Tetrahymena during its apoptosis-like degradation

Journal

CELL DEATH AND DIFFERENTIATION
Volume 8, Issue 3, Pages 289-297

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.cdd.4400807

Keywords

acidification; apoptosis; autophagosome; ciliate; lysosome; nucleus

Funding

  1. NIGMS NIH HHS [GM18051] Funding Source: Medline

Ask authors/readers for more resources

A key characteristic of apoptosis is its regulated nuclear degradation. Apoptosis-like nuclear degradation also occurs in the ciliated unicellular organism, Tetrahymena thermophila. Chromatin of the macronucleus undergoes massive condensation, a process that can be blocked by caspase inhibitors. The nucleus becomes TUNEL-positive, and its DNA is cleaved into nucleosome-sized fragments, in a matter of hours the macronucleus is completely degraded, and disappears. The condensed nucleus sequesters acridine orange, which means that it might become an acidic compartment. We therefore asked whether lysosomal bodies fuse with the condensed macronucleus to form an autophagosome. We monitored acid phosphatase (AP) activity, which is associated with lysosomal bodies but is not found in normal nuclei. We find that after the macronucleus condenses AP activity is localized in cap-like structures at its cortex. Later, after the degrading macronucleus loses much of its DNA, acid phosphatase deposits appear deeper within the nucleus. We conclude that although macronuclear elimination is initiated by an apoptosis-like mechanism, its final degradation may be achieved through autophagosomy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available