4.7 Article

Downstream DNA sequences are required to modulate Pvlea-18 gene expression in response to dehydration

Journal

PLANT MOLECULAR BIOLOGY
Volume 45, Issue 5, Pages 501-515

Publisher

SPRINGER
DOI: 10.1023/A:1010607223533

Keywords

common bean; ABA-independent dehydration response; etiolated growth; lea genes; stress response

Ask authors/readers for more resources

We have previously shown that mRNA and protein encoded by the Pvlea-18 gene from Phaseolus vulgaris L., a member of a new family of late embryogenesis-abundant (LEA) proteins, accumulate in dark-grown bean seedlings not only in response to water deficit but also during optimal irrigation. In this work, we studied Pvlea-18 gene transcriptional regulation by using transgenic Arabidopsis thaliana plants containing a chimeric gene consisting of the Pvlea-18 promoter region and the 3'-nos terminator fused to the GUS gene-coding region. We demonstrate that the chimeric gene is active during Arabidopsis normal development under well-irrigated conditions, and that it is further induced in response to ABA and dehydration treatments. Replacing the 3'-nos terminator with the Pvlea-18 3' region led to an additional increase in expression during development and in response to dehydration, but not in response to exogenous ABA. These results reveal an enhancer effect of the Pvlea-18 3' region, which showed to be higher specifically under dehydration. The small decrease in Pvlea-18 promoter expression observed when transgenic plants treated with fluridone (an ABA biosynthesis inhibitor) were subjected to dehydration suggests that the Pvlea-18 gene dehydration response is predominantly ABA-independent. Finally, we present evidence indicating that Pvlea-18 gene expression is negatively regulated during etiolated growth, particularly in roots, in contrast to the expression pattern observed during normal development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available