4.5 Review

Biological activity and structural aspects of PGLa interaction with membrane mimetic systems

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Volume 1788, Issue 8, Pages 1656-1666

Publisher

ELSEVIER
DOI: 10.1016/j.bbamem.2009.05.012

Keywords

Amphibian skin; Antimicrobial peptide; Lipid discrimination; Membrane thinning/thickening; Non-bilayer structure

Funding

  1. Austrian Science Funds [P18100-1310]

Ask authors/readers for more resources

Peptidyl-glycine-leucine-carboxyamide (PGLa), isolated from granular skin glands of Xenopus laevis, is practically devoid of secondary structure in aqueous solution and in the presence of zwitterionic phospholipids, when added exogenously, but adopts an a-helix in the presence of anionic lipids. The peptide was shown to exhibit antifungal activity and to have antimicrobial activity towards both Gram-negative and Gram-positive bacteria. As a broad variety of peptides is found in the secretions of amphibian skin combinatorial treatment of PGLa and magainin 2 was studied showing enhanced activity by a heterodimer formation. Thus production of mutually recognizing peptides seems to be an effective way in nature to increase selective membrane activity. Biophysical studies on membrane mimics demonstrated that PGLa can discriminate between different lipid species, preferentially interacting with negatively charged lipids, which are major components of bacterial but not mammalian cell membranes. This emphasizes the role of electrostatic interactions as a major determinant to trigger the affinity of antimicrobial peptides towards bacterial membranes. PGLa induced the formation of a quasi-interdigitated phase in phosphatidylglycerol bilayers; below their chain melting transition, which is due to the creation of voids below the peptide being aligned parallel to the membrane surface. In the fluid phase of phosphatidylglycerol the peptide inserts perpendicularly into the bilayer above a threshold concentration, which results in a hydrophobic mismatch of the peptide length and bilayer core for lipids <= C16. This mismatch is compensated by stretching of the acyl chains and in turn thickening of the bilayer demonstrating that membrane thinning cannot be taken generally as the hallmark of pore formation by antimicrobial peptides. Furthermore, PGLa was shown to affect membrane curvature strain of phosphatidylethanolamine, another main lipid component of bacterial membranes, where a cubic phase coexists with the fluid bilayer phase. Investigations on living Escherichia coli showed distinct changes in cell envelope morphology, when treated with the peptide. In a first stage loss of surface stiffness and consequently of topographic features was observed, followed in a second stage by permeabilization of the outer membrane and rupture of the inner (cytoplasmic) membrane supposedly by the mechanism(s) derived from model studies. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available