4.2 Article

Multiproxy record of late Pleistocene-Holocene climate and vegetation changes from a peat bog in Patagonia

Journal

QUATERNARY RESEARCH
Volume 55, Issue 2, Pages 168-178

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/qres.2000.2206

Keywords

paleoecology; paleoclimate; pollen; D/H ratios; stable isotopes; Patagonia; South America; Tierra del Fuego

Ask authors/readers for more resources

Pollen assemblage changes and stable hydrogen isotope analysis of mosses (Sphagnum magellanicum and Drepanocladus s.l.) from a bog in Tierra del Fuego, Argentina, provided independent proxies for reconstructing changes in effective moisture and temperature over the past 16,000 cal yr B.P. A deterministic model was used to reconstruct the stable hydrogen isotope composition of meteoric water from the D/H ratios of bog mosses over the last 16,000 years. Abrupt changes in temperature, as recorded in D/H ratios of moss cellulose, were accompanied by synchronous changes in vegetation composition during the late Pleistocene and early and middle Holocene, when moisture levels were lower than today. In contrast, temperature variability during the late Holocene was not accompanied by comparable vegetation changes. In particular, grass pollen (Poaceae) increased during periodic cold spells between 15,000 and 11,000 cal yr B.P., but a cold spell of similar magnitude ca. 2000 cal yr B.P did not appear to affect vegetation. During the late Pleistocene, the isotopic record from the peat core shows variations similar to the D/H ratios in the Antarctic Taylor Dome ice core. However, the timing of the changes in the Harberton record is more in line with the timing of other Southern Hemisphere records. (C) 2001 University of Washington.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available